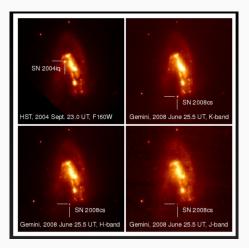
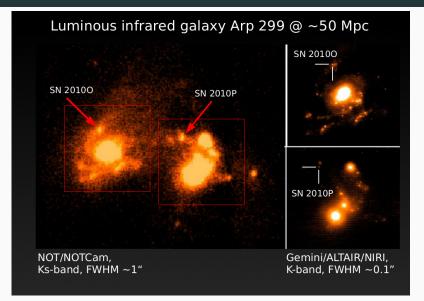

Evaluating the fraction of obscured supernovae in LIRGs

November 20, 2017

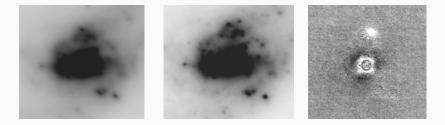

- The SUNBIRD+ Sample: 4 major datasets of LIRGS
- Detecting supernovae (SNe): What is our ability to detect SNe in the sample?
- Simulation: given the SNe in the sample and our detection efficiency, how many should we detect?

LIRG observations: Gemini/Niri

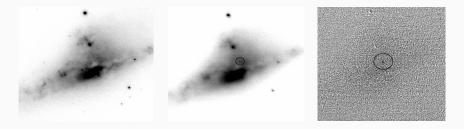

- Observations taken with Near InfraRed Imager (NIRI) and single-conjugate adaptive optics (AO) system ALTAIR on Gemini North
- 8 LIRGs were monitored between 2008-2011
- Discovery of 6 SNe

NIRI SNe

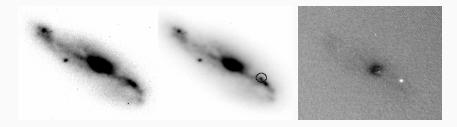
NIRI SNe



- Observations taken with NAOS CONICA adaptive optics system on ESO VLT in the near-IR Ks band
- 2-3 epochs of observation of 26 LIRGs in the period 2010-2013
- 4 SNe found


SNe in IRAS18293-3413: 2012

- SN detected first in 2012: 0.2" West and 1.5" North ($\approx 600 {\rm pc}$)
- 3 epochs of H and K band imaging

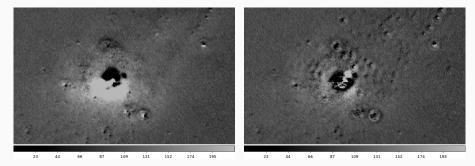

SN in IRAS17578-0400

- SN detected 2012/07/04
- SN is \approx 320pc from host nucleus
- $\bullet~2$ K and 2 H band observations

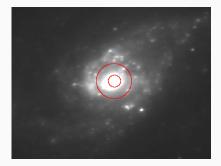
SN in ESO440-058

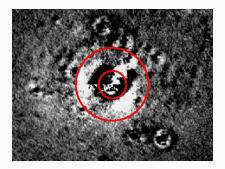
- SN detected 2012/07/17
- $\bullet~\text{SN}$ is $\approx 1.2 \text{Kpc}$ from host nucleus
- $\bullet\,$ Single K band epoch for the SN

LIRG observations: GEMS & KECK

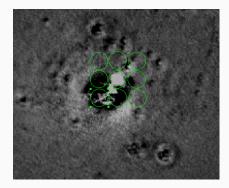

- Observations with Gemini South Adaptive Optics Imager (GSAOI), Gemini Multi-Conjugate Adaptive Optics System (GeMS)
- 13 LIRGs were observed with Gemini South GeMS/GSAOI between 2013-2016. A total of 38 K band images were taken with laser guide star multiple conjugate AO
- 21 LIRGs have been observed with KECK NIRC2.
 Observations began in 2016 and are ongoing, with 43 K band images taken so far with laser guide star AO.

	Host Galaxy	SN rate (yr-1)	Facility	Туре	Reference	Extinction (mag)	Projected distance (Kpc)
SN2004ip	IRAS 18293-3413	1.74	VLT/NACO	II	Mattila et al. (2007)	5-40	0.5
SN2004iq	IRAS 17138-1017	0.71	NICMOS/HST	II	Kankare et al (2008)	0-4	0.66
SN2008cs	IRAS 17138-1017	0.71	Gemini-N/ALTAIR	II	Kankare et al (2008)	17-19	1.5
SN2010cu	IC 883	1.26	Gemini-N/ALTAIR	II	Kankare et al (2012)	0-1	0.18
SN2011hi	IC 883	1.26	Gemini-N/ALTAIR	II	Kankare et al (2012)	5-7	0.38
SN2013if	IRAS 18293-3413	1.74	Gemini-S/GSAOI	IIP	Kool et al. (2017)	0-3	0.2
SN2015ca	NGC 3110	0.55	Gemini-S/GSAOI	IIP	Kool et al. (2017)	3	3.5
SN2015cb	IRAS 17138-1017	0.71	Gemini-S/GSAOI	II	Kool et al. (2017)	4.5	0.6
AT2015cf	NGC 3110	0.55	Gemini-S/GSAOI	II?	Kool et al. (2017)	2-5	3.5
SN2010O	Arp 299	2.05	Gemini-N/ALTAIR	Ib	Kankare et al (2014)	2	1.6
SN2010P	Arp 299	2.05	Gemini-N/ALTAIR	IIb	Kankare et al (2014)	7	1.2
AT2012xx	IRAS 18293-3413	1.74	VLT/NACO	II?	Reynolds et al (in prep)) ?	0.6
AT2012xx	IRAS 17578-0400	0.60	VLT/NACO	II?	Reynolds et al (in prep)) ?	0.32
AT2012xx	ESO 440-058	0.62	VLT/NACO	II?	Reynolds et al (in prep	?	1.2

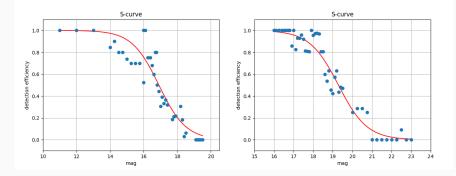

The overall sample


- 10 years of observations with a highly variable cadence
- Typical FWHM was 0.05" 0.15": natural seeing surveys have had 0.35" at best, usually more like 0.7"
- Most observed LIRGs have 20 epochs of observations, least have 2
- Multiple instruments create difficulties in comparison
- Simple estimate of SN rate from IR luminosity: 100+ SNe should have occured in these LIRGs during the observation period!
- How many should we have seen?
- Note, Mattila et al found 83% missed in Arp299, quite similar

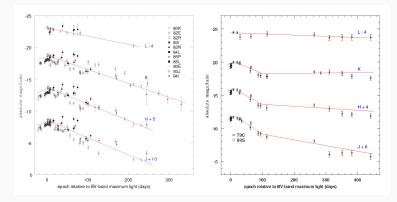
To find our ability to detect SNe in our data, simulate sources and recover. The sources effect the subtractions.



Can define regions, or use a grid.

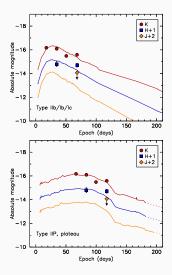


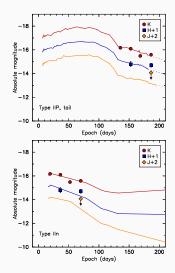
- Construct PSF using field stars and model using single best fitting function
- AO PSFs can be difficult: spatially variable as you move from the guide star, and have narrow and broad component
- Detection by comparing aperture (forced phot) at SN location with σ taken from a surrounding grid of apertures


Fitting an "S-curve" gives an estimate of 50% detection efficiency: 16.7, 19.3 for the inner and outer regions shown respectively. (cf. Seppo's comments on Miluzio)

Simulations

- With detection efficiency curves calculated for our data, can run a Monte Carlo simulation
- Randomly sample various distributions to generate SNe
- "Explode" them in individual galaxies to compare to cadence and detection efficiency
- Multiple parameters to understand/fit, notably:
 - Light curve evolution and peak magnitudes
 - Star formation rate in the host galaxy
 - Extinction of the SNe
 - Spatial distribution of the SN (cf. Radio SNe)

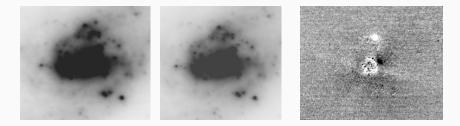

Supernova models



"type II" model

"slowly declining" model

Mattila & Meikle, 2001



Conclusions

- Taking the light curves and typical peak magnitudes from above and combining with measured detection efficiency moderately close to the nucleus, find that a "typical" SN might be visible for about 130 days.
- With our cadence, expect perhaps 45 SNe in our sample with these parameters
- This implies we expect many nuclear or heavily extincted SNe
- With complete simulation, can analyse our sensitivity to the various parameters
- With bayesian approach, can constrain SFR in the LIRGs and other attributes of SNe

SNe in IRAS18293-3413: 2013

- Second SN detected 2013/05/08.
- SN is $\approx 200 pc$ from host nucleus- close!
- Also have a H band image

