Time-stamping a LIRG merger

Petri Väisänen (SAAO / SALT)

Rajin Ramphul, Moses Mogotsi, Zara Randriamanakoto Jari Kotilainen, Seppo Mattila, Juha Reunanen, Peter Johansson Cristina Romero-Canizales, Jay Gallagher (UWisc), Miguel Perez-Torres (Granada), Stuart Ryder (Gemini/AAO)

SUNBIRD -

SuperNovae & star-Bursts in the InfraRed

VLT/NACO/Sinfoni and Gemini/Altair/GEMS adaptive optics imaging in the NIR

SALT spectroscopy

+ archival HST, Spitzer

~ 40 LIRGS ~ 40 lower lum SBs

Mainly 20-100 Mpc

Young massive clusters

Most massive population of stellar clusters. Globular cluster progenitors ?

Are cluster formation and disruption affected by the host galaxy conditions?

the Antennea (NGC 4038/4039)

Full of SSCs / YMCs

Which of them survive ?

Disappearing clusters

[Vaisanen+14]

MNRAS **431**, 554–569 (2013) Advance Access publication 2013 March 07 doi:10.1093/mnras/stt185

The *K*-band luminosity functions of super star clusters in luminous infrared galaxies, their slopes and the effects of blending

Z. Randriamanakoto,^{1,2*} P. Väisänen,^{1,3} S. Ryder,⁴ E. Kankare,⁵ J. Kotilainen⁶ and S. Mattila^{5,6}

¹South African Astronomical Observatory, PO Box 9, Observatory, Cape Town, South Africa

THE ASTROPHYSICAL JOURNAL LETTERS, 797:L16 (5pp), 2014 December 20 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/797/2/L16

STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

PETRI VÄISÄNEN^{1,2}, SUDHANSHU BARWAY¹, AND ZARA RANDRIAMANAKOTO^{1,3} ¹ South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town, South Africa; petri@saao.ac.za

THE ASTROPHYSICAL JOURNAL LETTERS, 775:L38 (6pp), 2013 October 1 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/775/2/L38

NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE–STAR FORMATION RATE RELATION

Z. RANDRIAMANAKOTO^{1,2}, A. ESCALA³, P. VÄISÄNEN^{1,4}, E. KANKARE⁵, J. KOTILAINEN⁵, S. MATTILA⁵, AND S. RYDER⁶ ¹ South African Astronomical Observatory, P.O. Box 9, 7935 Observatory, Cape Town, South Africa; zara@saao.ac.za

LIRG evolution

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum

- SFR starts to increase

- stellar winds dominate feedback - rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s) - can occur over a wide mass range - Mhalo still similar to before: dynamical friction merges

the subhalos efficiently

(a) Isolated Disk

- halo & disk grow, most stars formed - secular growth builds bars & pseudobulges - "Seyfert" fueling (AGN with Me>-23) - cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center: starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

1000

100

10

0.1

9

-2

9 11 Loso 10 logiol

yr⁻¹]

(Me)

SFR

def

0

Time (Relative to Merger) [Gyr]

C

-1

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

2

[Hopkins+07]

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly - characteristically blue/young spheroid

(g) Decay/K+A

(h) "Dead" Elliptical

- growth by "dry" mergers

LIRG evolution

Adaptive optics imaging and optical spectroscopy of a multiple merger in a luminous infrared galaxy \bigstar

P. Väisänen,¹[†] S. Mattila,^{2,3} A. Kniazev,¹ A. Adamo,⁴ A. Efstathiou,⁵ D. Farrah,⁶
P. H. Johansson,⁷ G. Östlin,⁴ D. A. H. Buckley,¹ E. B. Burgh,⁸ L. Crause,¹
Y. Hashimoto,¹ P. Lira,⁹ N. Loaring,¹ K. Nordsieck,⁸ E. Romero-Colmenero,¹
S. Ryder,¹⁰ M. Still¹ and A. Zijlstra^{1,11}

¹South African Astronomical Observatory, PO Box 9, Observatory, 7935 Cape Town, South Africa

THE ASTROPHYSICAL JOURNAL, 689: L37–L40, 2008 December 10 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A PAIR OF LEADING SPIRAL ARMS IN A LUMINOUS INFRARED GALAXY?¹

PETRI VÄISÄNEN,² STUART RYDER,³ SEPPO MATTILA,⁴ AND JARI KOTILAINEN⁴ Received 2008 August 28; accepted 2008 October 16; published 2008 November 5

Mon. Not. R. Astron. Soc. 420, 2209–2220 (2012)

doi:10.1111/j.1365-2966.2011.20186.x

The nuclear polycyclic aromatic hydrocarbon emission of merger system NGC 1614: rings within rings

Petri Väisänen,^{1,2*} Vinesh Rajpaul,³ Albert A. Zijlstra,⁴ Juha Reunanen⁵ and Jari Kotilainen⁶

¹South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape Town, South Africa

THE ASTROPHYSICAL JOURNAL, 786:156 (12pp), 2014 May 10 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A MULTI-WAVELENGTH VIEW OF THE CENTRAL KILOPARSEC REGION IN THE LUMINOUS INFRARED GALAXY NGC 1614

RUBÉN HERRERO-ILLANA¹, MIGUEL Á. PÉREZ-TORRES^{1,2,3}, ALMUDENA ALONSO-HERRERO^{4,13}, ANTXON ALBERDI¹, LUIS COLINA⁵, ANDREAS EFSTATHIOU⁶, LORENA HERNÁNDEZ-GARCÍA¹, DANIEL MIRALLES-CABALLERO⁷, PETRI VÄISÄNEN^{8,9}, CHRISTOPHER C. PACKHAM¹⁰, VINESH RAJPAUL¹¹, AND ALBERT A. ZIJLSTRA¹² ¹ Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada, Spain

MNRAS **471**, 2059–2076 (2017) Advance Access publication 2017 July 21 doi:10.1093/mnras/stx1685

Shutting down or powering up a (U)LIRG? Merger components in distinctly different evolutionary states in IRAS 19115–2124 (the Bird)

Petri Väisänen,^{1,2★} Juha Reunanen,³ Jari Kotilainen,^{3,4} Seppo Mattila,⁴ Peter H. Johansson,⁵ Rajin Ramphul,^{1,6} Cristina Romero-Cañizales^{7,8} and Hanindyo Kuncarayakti^{3,4}

¹South African Astronomical Observatory, PO Box 9, Observatory, 7935 Cape Town, South Africa

Starbursts, mergers and AGN

How does the interplay happen?

Starbursts, mergers and AGN

MNRAS 471, 1634–1651 (2017) Advance Access publication 2017 July 5 doi:10.1093/mnras/stx1672

Star formation and AGN activity in a sample of local luminous infrared galaxies through multiwavelength characterization

Rubén Herrero-Illana,^{1,2*} Miguel Á. Pérez-Torres,^{1,3} Zara Randriamanakoto,⁴ Antxon Alberdi,¹ Andreas Efstathiou,⁵ Petri Väisänen,^{6,7} Erkki Kankare,⁸ Erik Kool,^{9,10} Seppo Mattila,^{11,12} Rajin Ramphul^{4,6} and Stuart Ryder⁹

¹Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain

A&A 543, A72 (2012) DOI: 10.1051/0004-6361/201218816 © ESO 2012 Astronomy Astrophysics

e-MERLIN and VLBI observations of the luminous infrared galaxy IC 883: a nuclear starburst and an AGN candidate revealed

C. Romero-Cañizales^{1,2}, M. A. Pérez-Torres¹, A. Alberdi¹, M. K. Argo^{3,4}, R. J. Beswick⁴, E. Kankare², F. Batejat⁵, A. Efstathiou⁶, S. Mattila², J. E. Conway⁵, S. T. Garrington⁴, T. W. B. Muxlow⁴, S. D. Ryder⁷, and P. Väisänen⁸

¹ Instituto de Astrofísica de Andalucía - CSIC, PO Box 3004, 18008 Granada, Spain

Gas outflows

- Fundamental part of general galaxy evolution models
- But how do gas flows work, as a function of type, environment, and how far do they reach
- Fast and massive? Or e.g.
 "dripping faucet" type?

Time-stamping star-formation in a complex galaxy merger with VLT and SALT

IRAS 19115-2124 "The Bird"

Vaisanen+ 08 Vaisanen+ 17

IRAS 19115-2124 "The Bird" Vaisanen+ 08 Vaisanen+ 17

SF dominated by a minor component [VLT/Sinfoni]

IRAS 19115-2124 "The Bird"

Vaisanen+ 08 Vaisanen+ 17

Shock heating around the nuclei

Sinfoni J+K cubes (line ratios)

Budding AGN activity in massive component ?

Sinfoni J+K cubes (line ratios)

Budding AGN activity in massive component ?

Gas flows

Blue-shifted velocity components all over

Gas flows

Difference in Star Formation Histories

Difference in Star Formation Histories

	CO 2.30 μm	Al I 1.13 μm	Si I 1.21 μm	Ca I 2.27 μ m	$Pa\alpha$	$\mathrm{Br}\gamma$	SB age [Myr]	SP age [Myr]
Body-nuc	19	1.2	2	1.5	14	< 2	40	1000
Heart-nuc	18	1.2	3	2.5	85	13	8	1000
Head	13	< 0.6	_	< 0.5	220	31	6–7	10
Head-peak	< 7	_	_	_	720	105	4	< 9
Tail	16	1.3	< 1	< 1	95	14	8	10, 1000

Difference in Star Formation Histories

	CO 2.30 μm	Al I 1.13 μm	Si I 1.21 μm	Ca I 2.27 μ m	$Pa\alpha$	$\mathrm{Br}\gamma$	SB age [Myr]	SP age [Myr]
Body-nuc	19	1.2	2	1.5	14	< 2	40	1000
Heart-nuc	18	1.2	3	2.5	85	13	8	1000
Head	13	< 0.6	_	< 0.5	220	31	6–7	10
Head-peak	< 7	_	_	_	720	105	4	< 9
Tail	16	1.3	< 1	< 1	95	14	8	10, 1000

Bird kinematics and dynamics

Arc Seconds

-2

-4

Ρаα

-2

1-0S(1)

-4

Bird Summary

- LIRGS provide a lab to study many key
- BIRD observed in AO-IFU and SALT : able to age-date SF histories and correlate to outflows and (possible) AGN growth
- Three components of the Bird appear to be in very distinct evolutionary stages
 - beware of interpreting global (U)LIRG properties

 Superwinds shape galaxy evolution – we see quenching in action – work on-going