

European Space Agency

The James Webb Space Telescope: The Road to Science

+

*

Sarah Kendrew JWST-MIRI Instrument & Calibration Scientist European Space Agency, Baltimore

12 **-**

ŝ

JWST is a collaboration between NASA, ESA and CSA

This presentation contains results from work by many teams in the US, Europe and Canada

This presentation contains elements from many other existing presentations

I. JWST: THE MISSION

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 3

_ II ⊾ := = + II = ≝ _ II II = _ = := @ II _ II = := !*!

European Space Agency

• Project facts

- Launch date late 2018 SPRING 2019
- NASA Goddard Space Flight Center is managing the development effort.
- The main industrial contractor is Northrop Grumman
- All flight & scientific operations will be carried out from STScI after launch

The Observatory

- 6.5-m primary mirror, 18 adjustable segments
- 4 instruments, covering 0.6 28.5 μm
 NIRCam, NIRSpec, NIRISS, MIRI
- Orbit at L2

• Passively cooled to ~40K; only MIRI is actively cooled to ~7K ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 4

📕 🛌 🚦 🚍 🕂 💵 🚍 🔚 📕 🗶 📰 🗮 🚍 📲 🛶 🞯 💵 🚍 🚼 👯 🚘 💽 💓 European Space Agency

European contribution to JWST

JWST will be launched by an Ariane 5 rocket from Kourou, French Guyana

As of Oct 17, the Ariane 5 has had 81 successful launches in a row

jwst European contribution to JWST

• NIRSpec, the NIR Spectrograph, was built by a consortium of European industrial companies for ESA, with contributions from NASA

 Consortium led by Airbus Space & Defense

 The MIRI optical system was built by a consortium of nationally-funded
 European institutes, led by Prof. Gillian
 Wright (UK Astronomy Technology
 Centre, Edinburgh, UK)

 MIRI's detectors and cryogenic cooler system were developed by NASA JPL

*

Blue: NIRSpec partners Red: MIRI partners (image: G. Wright)

ESA | 01/01/2016 | Slide 7

European Space Agency

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 8

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 10

🚍 📲 🛌 📲 📥 📲 🔚 🔚 🔚 🔚 🗶 🚍 📲 📥 🚳 📲 🚍 🕄 👫 📥 🚺 🗰 🚺

- In Chamber A at Johnson Space Center, Summer 2017
- OTIS = Optical Telescope
 Element + Integrated Science
 Module
- Optical, Electrical, Thermal tests
- Full instrument support

Image: NASA

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 12

European Space Agency

just Launch & Deployment

Commissioning timeline starts at <u>L-15 mins</u>!

6 months of round-the-clock intensive functional checkouts and getting the observatory & instruments ready for science

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 13

European Space Agency

*

II. JWST INSTRUMENTATION

ESA UNCLASSIFIED - For Official Use

ESA | 01/01/2016 | Slide 15

_ II ⊾ II = + II = ≝ _ II II = _ II = 0 II _ II _ II . .

European Space Agency

esa

(u))

jwst Near-Infrared Camera: NIRCam

- University of Arizona/Lockheed Martin (PI: Marcia Rieke)
- Fully redundant A and B sides, total fov
 9.7 arcmin²
- Simultaneously images in short- & long-wavelength channels (0.6-2.3 $\mu m,$ 2.4-5.0 $\mu m)$
- contains <u>10</u> 2k x 2k Teledyne HgCdTe detectors
- 29 imager filters, 3 weak lenses, 2 grisms, 4 Lyot stops & various other optical elements for wavefront sensing & calibration (48 in total!)

ESA UNCLASSIFIED - For Official Use	ESA 01/01/2016 Slide 18
	European Space Agency

- Imaging
 - Prime science imager at 0.6 5 μm
 - Expected to be popular for parallel imaging
- Wide Field Slitless Spectroscopy (at 2.4 5 µm)
- Coronagraphic Imaging: coronagraphic imager at 1.8 5 μm
- Time-Series Imaging (0.6 5 μm)
- Grism Time Series $(2.4 5 \mu m)$

ESA UNCLASSIFIED - For Official Use	ESA 01/01/2016 Slide 19
	European Space Agency

jwst

Near-Infrared Imager and Slitless Spectrograph (NIRISS)

- Canadian contribution to JWST. Science team lead: René Doyon.
- Coverage 0.6-5.0 μm
- Modes for Cycle 1:
 - Wide-field slitless spectroscopy (0.8-2.2 μm; R~150)
 - Single-object slitless spectroscopy (R~700)
 - Aperture masking interferometry: provides contrast $10^{\text{-4}}$ for separations 70 400 mas
 - Imaging (12 filters): only for parallel imaging

Image: F115W

Spectra: GR150C, F115W

ESA | 01/01/2016 | Slide 20

European Space Agency

Near-Infrared Spectrograph (NIRSpec) jwst

FS

#

MOS

BOTS

MODES

just NIRSpec Micro-Shutter Array (MSA)

esa

- > 100 sources in fov > 3 x 3'
- Approx 250,000 micro-shutters, each 0.24 x 0.46"
- Each shutter 100 x 200 μm in size

just Mid-Infrared Instrument (MIRI)

Covers 5 – 28.5 µm, the only mid-IR instrument on JWST (PI: G. Wright/G. Rieke)

Cycle 1 modes:

- Imaging $(5-25 \mu m)$ •
- Coronagraphic Imaging (10.65 23 µm) •
 - One Lyot and three 4 Quadrant Phase Masks (4QPMs)
- Low Resolution Spectrometer (5-12 μ m; R~100)
 - Includes Slitless mode for high precision • spectro-photometry
- Medium Resolution Spectrograph (R~3000) •

• All NIR instruments use the Teledyne 2RG detectors (2k x 2k, 18 μ m pixels);

III. ROAD TO JWST SCIENCE

- Cycle 1 GTO program specifications almost complete
 - Observations list is public
 - APT (proposal) files will be released in Dec 2017
- Director's Discretionary Time (460 hrs) allocated for Early Release Science (ERS) results announced last week
 - 13 programs, zero exclusive access period
 - teams will test modes, return "science enabling products" to STScI
- Cycle 1 GO Call for Proposals will be published on 30 Nov 2017
 - Deadline: 6 April 2018; TAC will meet 17-29 June 2018
- JWST User Committee in place (JSTUC)

- Small (< 25 hours, 12 months default exclusive access period)
- Medium (25-75 hours, 12 months default exclusive access period)
- Large (>75 hours, no exclusive access period by default)
 - Balance distribution of program sizes over all JWST cycles, but small programs will likely dominate Cycle 1, even though there will be no cap on program size.
- Calibration
 - Calibrate specialized modes that are uncalibrated or poorly calibrated
 - Develop specialized software for certain JWST calibration or reduction tasks
 - Proposers must contact the relevant instrument groups at STScI
- Long-term
 - Programs whose science requires multiple cycles (astrometry, variability)
 - Can be small, medium or large.

ESA UNCLASSIFIED - For Official Use ESA | 01/01/2016 | Slide 28

- JWST is entering the final stages of hardware integration & testing
- Getting ready for launch in spring 2019
- Instruments in good shape
- Preparations for science well under way, first proposals chosen for early science

